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Abstract

We investigate the eigenvalue problem obtained from linearization of nonlinearly dis-
persive evolution equations about solitary wave solutions using the technique of the Evans
function. Different from weakly nonlinear water wave models, the physical system considered
here has nonlinearity in its highest derivative term. This results in a more detailed asymp-
totic analysis of the eigenvalue problem in the presence of a large parameter. Combining
the technique of singular perturbation with the Evans function, we show that the problem
has no eigenvalues of positive real part and the Evans function is non-vanishing everywhere
except the origin.
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1 Introduction

It has long been an issue to model and understand the full water wave problem due to its broad
applications to coastal engineering, prediction of ocean climate, and fluid mechanics. The full
water wave problem is imposed as a fully nonlinear system. Although a great deal of effort
has been made to directly tackle it both numerically and analytically, the problem is still not
completely well understood due to the complexity of its nonlinearity. Another way to deal with
this problem is to develop approximate models under a variety of physical conditions. One
primary approach was linear approximation under the assumption of a small perturbation from
a quiescent state. While using a higher order approximation, weakly nonlinear models have
been developed in the parameter regime of small amplitude and long wave length. Among them
are the well-known Korteweg-de Vries (KdV) and Boussinesq equations [15]. The acquisition of
these equations confirmed the existence of solitary waves for the the full water wave problem,
as a consequence, leading to the development of theories on solitons, integrability and inverse
scattering transform [1]. Despite both the physical and mathematical importance of the weakly
nonlinear approximation for the full water wave problem, it has limitations to model higher
nonlinear phenomena, including high-amplitude waves and wave breaking. Efforts have been
made to obtain higher nonlinear model equations. Among them, the Green-Naghdi equations
(rf. [9], [10], [6], [5])

ηt + (uη)x = 0,

ut + uux + ηx =
1
3η
(
η2 d

dt
(ηux)

)
x
,

were derived for both free surface and inter-facial surface waves under the assumption of long
wave length but relatively large amplitude compared with the depth of the fluid. Here, d

dt(ηux) =
(ηux)t + u(ηux)x, η and u represent the surface disturbance and the horizontal velocity, respec-
tively. Numerical comparisons [6] have shown that the Green-Naghdi equations have a broader
parameter regime to approximate the full water wave problem, especially, in the regime of rela-
tively large amplitude. In this paper, we shall analytically investigate stability of solitary waves
of the Green-Naghdi equations. It is well-known that solitary waves of the KdV equation are
orbitally stable and this has been proved by using a variational method due to the fact that its
solitary waves are minimizers of its Hamiltonian functional [4]. However, this is not a common
property for the full water wave problem, a class of Boussinesq equations [14], and the Green
Naghdi equations. As a matter of fact, the second variation of their Hamiltonian functional
subject to certain constraints are indefinite. Therefore, variational approach for the stability
analysis of these systems may not be applicable. In this paper, we adapt the other technique,
the Evans function, to investigate eigenvalue problems for solitary waves of the Green-Naghdi
equations. Evans [8] has used this method for the stability issue of the impulses in nerve ax-
on equation. Later, this method was further developed by Jones et al, [2], [3] [12], and Pego
and Weinstein [13], [14] to apply it to a wide range of nonlinear evolution equations, includ-
ing the weakly nonlinear KdV equation and Boussinesq equations. However, compared with
weakly nonlinear models, the higher nonlinearity possessed by the Green-Naghdi equations is
more challenging to consider stability of their solitary waves and demands more detailed analysis
on this system. In this paper, we shall use singular perturbation theory to deal with the case
when the eigenvalue problem for linear stability analysis has a large parameter. In Section 2, we
study the Hamiltonian structure of the Green-Naghdi Equations. In Section 3, we shall derive
the eigenvalue problem for solitary waves and discuss its properties. The Section 4, we use the
singular perturbation method to show that there are no eigenvalues of large magnitude at least
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when the speed of propagation of solitary waves are close to that of linear waves, and thus the
Evans function does not have zeros in a neighbourhood of infinity. In the last section, we shall
use the KdV approximation to show that the Evans function has only one zero at the origin and
thus the corresponding eigenvalue problems has no eigenvalue problem of positive real part.

2 The Hamiltonian Structure of the Green-Naghdi Equations

Assume that the depth of the fluid flow is h so that the surface disturbance η and the horizontal
velocity u satisfy the condition η → h and u→ 0 as |x| → ∞.

To transform the Green Naghdi equations to a non-dimensional system, we let x = hx̃,
t =

√
h/g t̃, η = hη̃ and u =

√
hg ũ. For the sake of simplicity, we also omit using the accent˜in

the rest of the paper. Then we obtain the following dimensionless system,

ηt + (uη)x = 0,

ut + uux + ηx =
1
3η
(
η2 d

dt
(ηux)

)
x
,

such that η → 1 as |x| → ∞. One may also multiply the first equation by u and the second
equation by η, and then adding the resulting equations together. By letting w = uη, we obtain
the equivalent system

ηt + wx = 0,

wt = −
(w2

η

)
x
− ηηx +

1
3

(
η2 d

dt

(
η(
w

η
)x
))

x

.
(2.1)

The system (2.1) will be used to conduct linear stability analysis of solitary waves in this paper.
The Green Naghdi equations have a Hamiltonian structure of the form(

wt
ηt

)
= J

( δH
δw
δH
δη

)
,

where the Hamiltonian functional H takes the form

H =
1
2

∫ (
w2

η
+

1
3
η3
(w
η

)2
x

+ (η − h)2

)
dx,

and the Hamiltonian operator J may be expressed as the product of three 2x2 matrix operators
J = B−1J̃(B∗)−1. Here

J̃ = −
(
∂m+m∂ η∂

∂η 0

)
, B =

(
I − 1

3∂η
3∂ 1

η −∂
(
w
η

)
x
η2 + 1

3∂η
3∂ w

η2

0 I

)
,

m = w − 1
3

(
η3(wη )x

)
x

and ∂ is the derivative with respect to the spatial variable x. Under the
assumption that η is positive and η → 1 as |x| → ∞, the operator L = I − 1

3∂η
3∂ 1

η is a positive,
sturm-liouville operator and thus has a bounded inverse L−1. Therefore, B and its adjoint
operator B∗ are also invertible, denoted by B−1 and (B∗)−1, respectively. Another conserved
quantity of this system Q, so called the conservation of momentum, is

Q =
∫
m
(
1− 1

η

)
dx.
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Hamiltonian structures and conserved quantities of evolution equations have been used to
study stability of their travelling wave solutions. However, this method may not apply to the
stability analysis of solitary waves of the Green Naghdi equations directly. A solitary wave
solution (w(x− ct), η(x− ct)) of the system (2.1) takes the form of sech-functions such that

w = c(c2 − 1) sech
(√3(c2 − 1) (x− ct)

2c
)2
,

η = 1 +
w

c

for any fixed constant c with |c| > 1. A direct calculation shows that each solitary wave solution
(w(x− ct), η(x− ct)) is a critical point of the functional H − cQ, i.e. the identities

δH

δw
− cδQ

δw
= 0,

δH

δη
− cδQ

δη
= 0,

hold at the solitary wave. Taking the second variations of the functionals H and Q, we obtain

H ′′ =
(

(1/η)L C
C∗ D

)
, Q′′ =

(
0 E
E∗ F

)
,

with operators

C = −m
η2
− 1
η
∂

((w
η

)
x
η2 − 1

3
η3∂

w

η2

)
,

D = I +
2wm
η3
− w2

η3
− η2

(w
η

)
x
∂
w

η2
+
w

η2
∂
(w
η

)
x
η2 − w

3 η2
∂η3∂

w

η2
,

E = L∗ 1
η2

+
1

3 η2
(ηηx)x −

1
η
∂ηx,

F = −2m
η3

+
2ηx
η

(w
η

)
x
− 2w

3η3
(ηηx)x − ηx∂

w

η2
+
w

η2
∂ηx

− 1
η2
∂
(w
η

)
x
η2 + η2

(w
η

)
x
∂

1
η2

+
1

3η2
∂η3∂

w

η2
+

w

3η2
∂η3∂

1
η2
.

It follows from Weyl’s essential spectrum theorem that the essential spectrum of the operator
H ′′−cQ′′ evaluated at a solitary wave coincides with that of its asymptotic operator H ′′∞−cQ′′∞
as |x| → ∞. Since

H ′′∞ − cQ′′∞ =
(

I − 1
3∂

2 −c(I − 1
3∂

2)
−c(I − 1

3∂
2) I

)
,

it follows that the essential spectrum consists of the intervals (−∞, 1 − |c| ] and [ 1 + |c|, ∞).
Hence, the operator H ′′ − cQ′′ has a negative, infinite-dimensional spectral space. This fact
fails to satisfy one of the basic assumptions [11] on H − cQ to be used for stability analysis.
Therefore, the Evans function becomes our choice to investigate stability of solitary waves in
this paper.

3 The eigenvalue problem and the Evans function

The Evans function is defined by using solutions of an eigenvalue problem obtained from lin-
earization of the underlying system about a travelling wave solution. We use the standard
expression

w̃ = wc(x− ct) + eλtw(x− ct), η̃ = ηc(x− ct) + eλtη(x− ct)
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to take this procedure, where (wc, ηc) is a solitary wave in the form of (2.1). Then the eigenvalue
problem may be written as a system of the following two ordinary differential equations.

λw =
(
J1w + J2w

′ + J3w
′′ + J4η + J5η

′ + J6η
′′)′,

λη = c η′ − w′,
(3.1)

where ′ represents the derivative with respect to ξ with ξ = x− ct, and Jk’s are functions of the
solitary wave and its derivatives such that

J1 = c− 2wc
ηc
− λ

3
ηcη
′
c −

2
3
η′cw

′
c −

2
3
wcη

′′
c +

2
3
ηcw

′′
c +

2wc(η′c)
2

3ηc
,

J2 =
λ

3
η2
c +

c ηcη
′
c

3
− 2η′cwc

3
, J3 =

2ηcwc
3
− c

3
η2
c ,

J4 = −2c ηcw′′c
3

+
w2
c

η2
c

− ηc +
c

3
η′cw

′
c +

2
3
wcw

′′
c −

w2
c (η
′
c)

2

3η2
c

,

J5 =
cηcw

′
c

3
− 2

3
wcw

′
c +

2w2
cη
′
c

3ηc
, J6 = −1

3
w2
c .

Equivalently, the eigenvalue problem may be expressed as a system of first order equations

Y ′ = AY, (3.2)

where

Y =


η
w
w′

w′′

 , A =


λ
c 0 1

c 0
0 0 1 0
0 0 0 1
a1
`

a2
`

a3
`

a4
`

 ,

with

a1 = J ′4 +
λJ4

c
+
λJ ′5
c

+
λ2J5

c2
+
λ2J ′6
c2

+
λ3J6

c3
,

a2 = J ′1 − λ, ` = −J3 −
J6

c
=
c

3
,

a3 = J1 + J ′2 +
J4

c
+
J ′5
c

+
λJ5

c2
+
λJ ′6
c2

+
λ2J6

c3
,

a4 = J2 +
J5

c
+
λJ6

c2
.

It follows from Weyl’s essential spectral theorem again that the essential spectrum of the system
Y ′ = AY is the same as that of its asymptotic system Y ′ = A∞Y , where A∞ is the limit of A,
i.e.

A∞ = lim
|x|→∞

A =


λ
c 0 1

c 0
0 0 1 0
0 0 0 1

−3λ
c2
−3λ

c
3(c2−1)
c2

λ
c

 .

Since the characteristic polynomial f(z) of A∞ takes the form

f(z) = z4 − 2λ
c
z +

(λ2

c2
− 3(c2 − 1)

c2

)
z2 +

6λ
c
z − 3λ2

c2
= (z2 − 3)

(
z − λ

c

)2 +
3z2

c2
,
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it follows that f has a pure imaginary root if and only if λ is pure imaginary. Hence, the essential
spectrum of A coincides with the imaginary axis in the λ-plane. In addition to its essential
spectrum, the system also has an eigenvalue at λ = 0 with a one-dimensional eigenspace spanned
by the eigenvector Y T

c = (η′c, w
′
c, w

′′
c , w

′′′
c ). This is a matter of fact for Hamiltonian systems that

are translation invariant. We shall use it to find multiplicity of the zero for the Evans function
at λ = 0.

To detect whether (3.2) has other eigenvalues, especially, those values lying on the right-half
of the λ-plane, we now turn to the technique of the Evans function. It follows from [13] that the
Evans function may be defined in a domain, Ωλ, contained in the λ-plane such that the matrix
A satisfies the following conditions.

H1. A is continuous in (ξ, λ), and analytic in λ for fixed ξ.
H2. A→ A∞ as |ξ| → ∞ uniformly for λ in any compact set of Ωλ.
H3. The integral

∫
R
|A−A∞| dξ converges for all λ in Ωλ, uniformly on compact sets.

H4. A∞ has a unique, simple eigenvalue of smallest real part.
Since solitary wave solutions of the Green Naghdi equations are real analytic functions and

decay exponentially at infinity, A satisfies the first three hypotheses for any complex value λ
and uniformly in any compact set of the λ-plane. It also follows from [13] on the characteristic
polynomial f that when <λ ≥ 0, f has a unique and simple zero of smallest negative real part,
denoted by µ(λ), and all other roots have nonnegative real parts. Hence, the right-half complex
plane is contained in Ωλ. The Evans function then may be formed by the dot product of the
solutions Y and Z of (3.2) and its adjoint system, respectively, possibly with a scaling. In
addition, Y and Z satisfy the conditions

lim
ξ→∞

e−µξY (ξ)→ v, lim
ξ→−∞

eµξZ(ξ)→ w,

where v is an eigenvector of the eigenvalue µ of A and w is an eigenvector of −µ of −AT , i.e.
Y and Z lie in the stable and unstable manifolds of the systems Y ′ = AY and Z ′ = −ATZ,
respectively. The Evans function D = ZTY has a zero at λ if and only if Y and Z are homoclinic
orbits in the two systems. In the next theorem, we show that eigenvalues of the system (3.2)
appear symmetrically about the real and imaginary axes and therefore, it is sufficient to study
the Evans function on the first quadrant of the complex plane.

Theorem 3.1 Suppose that λ is an eigenvalue of the problem (3.2). Then −λ and ±λ are also
eigenvalues of (3.2), having the same geometric multiplicity as λ.

Remark. It is worth noticing that if σk, for k = 1, 2, 3, 4, are roots of the characteristic
polynomial f at λ, then −σ̄k’s are roots of f at −λ. Especially, when the solution Y of (3.2) lies
in the stable manifold at λ with <λ ≥ 0, and e−µξY → v as ξ → ∞, the solution V defined in
the above theorem lies in the unstable manifold of the system (3.2) at −λ with eµξV → ṽ when
ξ → −∞, where ṽ = (v1, v2,−v3, v4)T . Even though the Evans function D may be defined to be
its analytic continuation while λ is going across the imaginary axis from the right hand complex
plane, and V is not used to define the continuation for λ with <λ < 0 [13], the relations between
solutions of (3.2) at ±λ and at the complex conjugate ±λ show that one only needs to study
the Evans function on the first quadrant to determine whether (3.2) has other zeros besides
λ = 0. To conclude this section, now we show computations for the algebraic multiplicity of the
eigenvalue λ = 0.

When λ = 0, one may integrate the system (3.1) once and use the relation between w and η
to obtain the second order equation(

J1 + J4/c
)
w +

(
J2 + J5/c

)
w′ + (J3 + J6/c)w′′ = 0.
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Then we find a solution of its adjoint problem(
J1 + J4/c

)
v −

((
J2 + J5/c

)
v
)′ + ((J3 + J6/c)v

)′′ = 0

as v = w′c/η
2
c . v is the derivative of the function fc = wc/ηc from which a bounded solution

ZTc = (Z1, Z2, Z3, Z4) of the adjoint problem Z ′ = −ATZ of (3.2) may be formed so that

Z ′1 = J ′4fc, Z ′2 = J ′1fc, Z3 =
(
J2 + J5/c

)
fc + `f ′c, and Z4 = −`fc.

It follows that

Z1 =
w2
c

2c3ηc

(
−c2(2c2 − 1) + 4cwc + 2w2

c ),

Z2 = −w
2
c

c2
, Z3 =

(2wc + c)w′c
3η2
c

, Z4 = −cwc
3ηc

.

Substituting Yc and Zc into the identity [13]

D′(0) = −
∫
R

ZT
∂A

∂λ

∣∣∣∣
λ=0

Y dx

yields that the derivative of the Evans function at λ = 0 vanishes. The second derivative D′′(0)
of the Evans function may be computed by using the expression

D′′(0) = −
∫
R

(
ZTλ

∂A

∂λ

∣∣∣∣
λ=0

Y + ZT
∂A

∂λ

∣∣∣∣
λ=0

Yλ + ZT
∂2A

∂λ2

∣∣∣∣
λ=0

Y

)
dx, (3.3)

where Zλ and Yλ denote derivatives of Y and Zwith respect λ. To compute Yλ, we observe that
if (w, η) is a solution in the stable manifold of (3.1) at λ = 0 , (w, η) = (w′c, η

′
c) and it satisfies

equations

J1wλ + J2w
′
λ + J3w

′′
λ + J4ηλ + J5η

′
λ + J6η

′′
λ = wc −

∂J1

∂λ
w′c −

∂J2

∂λ
w′′c ,

ηc − 1− cηλ + wλ = 0.

Substituting ηλ = (ηc − 1)/c + wλ/c into the first equation, one obtains a non-homogeneous
equation to solves for wλ by using the fact that the corresponding homogeneous equation has a
solution w′c and the other solution independent of w′c may be computed by means of reduction
of order. Then the method of variation of parameters leads to the result

wλ =
wc

c2(c2 − 1)
(
c− 3c3 +

√
3(c2 − 1)x tanh

√
3(c2 − 1)x

2
)
.

Therefore, Y T
λ = ((ηc − 1)/c+ wλ/c, wλ, w

′
λ, w

′′
λ).

Zλ may be computed in a similar way. Because the adjoint system of (3.1) takes the form

J1f
′ − (J2f

′)′ + (J3f
′)′′ + λf + g′ = 0,

J4f
′ − (J5f

′)′ + (J6f
′)′′ − λg − cg′ = 0,

at λ = 0, the derivative (fλ, gλ) of its solution (f, g) with respect to λ satisfies the equations

J1f
′
λ − (J2f

′
λ)′ + (J3f

′
λ)′′ + f + g′λ +

∂J1

∂λ
f ′ −

(∂J2

∂λ
f ′
)′ = 0,

J4f
′
λ − (J5f

′
λ)′ + (J6f

′
λ)′′ − g − cg′λ = 0.
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When (f, g) = (fc, gc) with fc = wc
ηc

and g′c = −J1f
′
c+(J2f

′
c)
′−(J3f

′
c)
′′, i.e. (f, g) is a homoclinic

orbit of the adjoint problem, one may combine the above two equations to obtain the non-
homogeneous equation

(J1 + J4/c)f ′λ − ((J2 + J5/c)f ′λ)′ + ((J3 + J6/c)f ′λ)′′ + fc − gc/c+
∂J1

∂λ
f ′c −

(∂J2

∂λ
f ′c
)′ = 0.

Therefore, under the boundary condition fλ, gλ → 0 as x → −∞, one may apply the methods
of reduction of order and variation of parameters to the above equation and obtain the solution

fλ =
1

3
√
c2 − 1 ηc

( 3xwc
c
√
c2 − 1

+ 2
√

3 c(2c2 − 1)(1 + tanh y) + 2
√

3 (2c2 − 1)wc
)
,

and consequently,

gλ = − 2c√
3

ln
(c+

√
c2 − 1 tanh y)(c+

√
c2 − 1 )

(c−
√
c2 − 1 tanh y)(c−

√
c2 − 1 )

+
2c2(c2 − 2)√

3(c2 − 1)

(
1 +

tanh y
ηc

)
+

− 2
3(c2 − 1)ηc

(
−3(c2 − 1)w2

cw
′
c

c2
+ (8c4 − 7c2 + 4)

wcw
′
c

2c
+ (2c4 − c2 − 2)

w′c
2

)
+

− xwc
2c2(c2 − 1)ηc

(
2 + (4c2 − 3)wc/c− 5w2

c/c
2
)
,

where y =
√

3(c2 − 1)x/(2c). Hence, Zλ = (Z1λ, Z2λ, Z3λ, Z4λ) may be obtained by taking the
derivative with respect to λ on both sides of the following identities

Z1 = −cg +
(
J4 +

λ

c
J5 +

λ2

c2
J6

)
f + (J6f

′)′ −
(
J5 +

λ

c
J6

)
f ′,

Z2 = g + J1f − J2f
′ + (J3f

′)′,

Z3 = `f ′ +
(
J2 +

1
c
J5 +

λ

c2
J6

)
f,

Z4 = −`f,

valid for any λ, and substituting λ = 0, (f, g) = (fc, gc) and (fλ, gλ) as computed above into
the resulting equations. Using the above computations, we now state the result on D′′(0) in the
following theorem.

Theorem 3.2 At λ = 0, the Evans function of the eigenvalue problem (3.1) has a zero of
multiplicity two, and thus the eigenvalue λ = 0 has an algebraic multiplicity equal to two.

Proof. Substituting Y = Yc, Z = Zc, Yλ and Zλ into the equation (3.3) and taking integration,
we obtain the following identity.

D′′(0) =
16
√

1 + b2
(
2b
√

1 + b2 − ln(b+
√

1 + b2 )
)
sign c

√
3

,

where b =
√
c2 − 1. Hence, |D′′(0)| > 0 for any b > 0. It follows from Theorem 4 [13] that

one may normalize D at infinity by choosing the scaling factor % as the scalar product of the
vectors v0 = limx→−∞ e

µxZ and w0 = limx→∞ e
−µxY , where µ = µ(λ) is the eigenvalue of the

smallest real part of the asymptotic matrix A∞. When λ = 0, µ = −
√

3(c2 − 1)/|c|, v0 =
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−4c2(c2−1)
3 (0, 0, µ, 1)T and w0 = 4µ(c2 − 1)(1, c, cµ, cµ2)T . Therefore, % = 32(c2 − 1)9/2 sign c =

32b9 sign c, and the second derivative of the normalized Evans function D̃ becomes

D̃′′(0) =

√
1 + b2

(
2b
√

1 + b2 − ln(b+
√

1 + b2 )
)

2
√

3 b9
.

The second conclusion follows from the fact [2] that the multiplicity of a zero λ0 of the Evans
function is equivalent to the algebraic multiplicity of the eigenvalue λ0, and D̃ > 0 for any b
with b =

√
c2 − 1.

4 Asymptotic behavior of the Evans function

It has been shown that if the system (3.1) satisfies conditions of Proposition 1.17 in [14], then
the normalized Evans function approaches one as |λ| → ∞. However, there is a difficulty to
apply the Proposition to the Green-Naghdi equations. If (3.1) is changed to a system of first
order equations, then coefficients of the reduced system (3.2) contains powers of λ up to the
third order. As a result, the integral

∫
R
|F |ds as defined in [14] is not bounded for large λ. It

has also been pointed out in [14], the conditions in the proposition are only sufficient. Here,
we shall use the Hamiltonian structure of the Green Naghdi equations to decompose differential
operators in (3.1), and use the result to show that when γ =

√
1− c−2 is sufficiently small, the

Evans function has no zero for any sufficiently large |λ|.

Lemma 4.1 Let (w, η) be a solution of the system (3.1). Then there are functions u, v, ∆1

and ∆5, depending on the solitary wave solution (wc, ηc) and λ, and an integer N > 0 such that
whenever |λ| ≥ N , the function η′ can be expressed as

η′ =
−1
λρ

(
s1w

′′ + (1− s1)w′′ − s2bw
′

λ
− (1− s2)bw′

λ

)
+

1
λρ

(
cη′′ − s3cbη

′

λ
+ bη

)
,

the linear operator Eλ, defined by

Eλf = −
(
a2 +

s1

λ2ρ

)
f ′′ −

(
a1 −

s2b

λ3ρ
+
u

λ

)
f ′ +

(
a3 + 1− v

λ

)
f,

is invertible on the function space {f ; sup|x|<∞ |ea|x|f (j)(x)| <∞, j = 0, 1, 2} for any fixed a ≥ 0,
and the first equation of the system (3.1) can be decomposed as

λEλw = Eλ
(ca2 − 2wcηc

3

a2 + s1
λ2ρ

w′ +
w2
c

3(a2 + s1
λ2ρ

)
η′ +

c

λρ
(
a2 + s1

λ2ρ

)η)+

− Eλ
(∆1 + J∗2 + J ′3

a2 + s1
λ2ρ

w +
∆5 + J5 + J ′6
a2 + s1

λ2ρ

η
)

+
1
λ
U ,

where a0 = 1
3(ηcη′c)

′, a1 = 1
3ηcη

′
c and a2 = 1

3η
2
c , and the coefficients b, ρ and sk, for k = 1, 2, 3,

satisfy the equations

1− s1 =
a2s2b c

λ2
(
a2 + s1

λ2ρ

) , c− ca2

a2 + s1
λ2ρ

=
(1− s2)b
λ2ρ

, b =
−c

a2 + s1
λ2ρ

,

s3 =
s2

λ2ρ(a2 + s1
λ2ρ

)
, ρ = 1 +

(1− s3)bc
λ2

.
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In addition, U is a linear function of y = (w, η), y′ and y′′, together with the expressions u, v,
∆1 and ∆5, satisfying the inequalities

|U| ≤Mγ2e−γ|x|(‖y‖+ ‖y′‖+ ‖y′′‖), |u| ≤Mγ2e−γ|x|, |v| ≤Mγ2e−γ|x|,

|∆1| ≤Mγ2e−γ|x|, |∆5| ≤Mγ2e−γ|x|.

for some constant M independent of λ for any |λ| ≥ N .

Using the above Lemma, one may estimate the characteristic polynomial of the constant
matrix A∞, and the asymptotic behavior of the Evans function as |λ| is sufficiently large. We
now demonstrate these results as the consequences of the Lemma.

Corollary 4.2 For any |λ| sufficiently large, the roots of the characteristic polynomial of A∞

coincide with the associated characteristic roots of the differential operator E∞λ and the matrix

A∞1 = λ

(
1
c + 3s∞1

λ2cρ∞
−3
λ2ρ∞

1
c2

+ 3s∞1
λ2c2ρ∞

1
c −

3
λ2cρ∞

)
.

Theorem 4.3 For any sufficiently large |λ| with <λ ≥ 0 and any sufficiently small γ > 0, the
system (3.1) has no bounded non-trivial solutions decaying to zero at x =∞, and thus the Evans
function is non vanishing.

5 The KdV approximation of the Green Naghdi equations

As has been pointed out in [9] that the KdV equations is an approximation of the Green-Naghdi
equations. Let γ2 = 1− c−2. One may apply the following transformations [14]

s = γ(x− ct), τ = cγ3t, w = cγ2u, η = 1 + γ2v

to the system (2.1), and the second order approximation η = 1 + γ2v1 + γ4v2 + · · · and w =
c(γ2u1 + γ4u2 + · · · ), for the small parameter γ > 0, yields the system

v1s − u1s = 0,

u1τ + v1τ − u1s = −(u2
1)s − v1v1s −

1
3
u1sss.

(5.1)

Under the conditions u1, v1 → 0 as |s| → ∞, we derived the KdV equation

u1τ −
1
2
u1s +

3
4

(u2
1)s +

1
6
u1sss = 0.

This approach also leads to a rescaling of the eigenvalue problem (3.1) so that one may obtain
an equivalent system for which the linearized KdV equation about a solitary wave becomes
its approximation. Correspondingly, we let λ = cγ3Λ, s = γξ, w = cw̃, wc = cγ2w̃c and
ηc = 1 + γ2η̃c. Then w̃c = η̃c = c2 sech2

√
3x
2 . Substituting these transformations to the system

(3.1) and dropping the accent˜for simplicity, we obtain the system

γ2Λη − η′ + w′ = 0,

Λw + Λη = (J̃1w + γ2J̃2w
′ + J̃3w

′′ + J̃4η + γ2J̃5η
′ + γ4J̃6η

′′)′,
(5.2)
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where J̃k’s are given functions expressed as

J̃1 = − 2ηc
1 + γ2ηc

− γ4Λ
3

(1 + γ2ηc)η′c −
2γ4

3
(η′c)

2 − 2γ4

3
ηcη
′′
c +

+
2γ6ηc(η′c)

2

3(1 + γ2ηc)
+

2γ2

3
(1 + γ2ηc)η′′c ,

J̃2 =
Λ(1 + γ2ηc)2

3
+

(1 + γ2ηc)η′c
3

− 2γ2ηcη
′
c

3
,

J̃3 =
1
3

(γ4η2
c − 1),

J̃4 = 1− (1− γ2)ηc −
2γ2

3
(1 + γ2ηc)η′′c +

γ2η2
c

(1 + γ2ηc)2
+
γ4

3
(η′c)

2 +

+
2γ4

3
ηcη
′′
c −

γ8η2
c (η
′
c)

2

3(1 + γ2ηc)2
,

J̃5 =
(1 + γ2ηc)η′c

3
− 2γ2

3
ηcη
′
c +

2γ4η2
cη
′
c

3(1 + γ2ηc)
, J̃6 = −η

2
c

3
.

When γ = 0, we obtain the system

η′ − w′ = 0

Λw + Λη = (−2ηcw −
1
3
w′′ + η − ηcη)′.

Since we look for solutions decaying to zeros at infinity, the above system is equivalent to the
equations

η = w, Λw = (
1
2
w − 3

2
ηcw −

1
6
w′′)′.

The second equation is the linearized KdV equation (5.1) about its solitary wave solution η0c =
sech2

√
3x
2 . It is also well known that the Evans function of the eigenvalue problem for the KdV

equation takes the form

D =

(
µ+
√

3
µ−
√

3

)2

,

where µ is the root of the smallest real part of the characteristic polynomial for the equation
µ3−3µ+ 3Λ = 0. Therefore, the linearized KdV equation has only one eigenvalue at λ = 0 with
an algebraic multiplicity two. Since in any bounded domain of Λ, (5.2) is a regular perturbation
problem with the small parameter γ, solutions of (5.2) are convergent to those of linearized KdV
equation when γ → 0 and the Evans function of (5.2) has the same zeros as that of the KdV
equation for any sufficiently small γ as well. On the other hand, on any bounded domain of λ,
the problem (3.1) may be expressed as a regular perturbation of the equations

λw = cw′ − (1− ∂2/3)−1η, λη = −w′ + cη′

with respect to the parameter γ, and the operator(
λ− c∂ (1− ∂2/3)−1

∂ λ− c∂

)
has a bounded inverse outside any neighbourhood of the origin λ = 0 with <λ ≥ 0, and thus
(3.1) has no eigenvalues when λ 6= 0 in this case. Combining Theorem 4.4 with results in this
section, one may conclude that for any γ sufficiently small, the only eigenvalue of the problem
(3.1) is λ = 0.
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